1. Innovation in the pharmaceutical industry: New estimates of R&D costs
2. Gómez-Bombarelli, R. , Duvenaud, D. , Hernández-Lobato, J.M. , Aguilera-Iparraguirre, J. , Hirzel, T.D. , Adams, R.P. , Aspuru-Guzik, A. : Automatic chemical design using a data-driven continuous representation of molecules. arXiv preprint arXiv:1610.02415 (2016)
3. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology;Oncotarget,2017
4. Kadurin, A. , Nikolenko, S. , Khrabrov, K. , Aliper, A. , Zhavoronkov, A. : drugan: an advanced generative adversarial autoencoder model for de-novo generation of new molecules with desired molecular properties in silico. Molecular Pharmaceutics (2017)
5. Jaques, N. , Gu, S. , Bahdanau, D. , Hernández-Lobato, J.M. , Turner, R.E. , Eck, D. : Sequence tutor: Conservative fine-tuning of sequence generation models with kl-control. In: International Conference on Machine Learning, pp. 1645–1654 (2017)