AC-ModNet: Molecular Reverse Design Network Based on Attribute Classification

Author:

Wei Wei1,Fang Jun1,Yang Ning1,Li Qi1,Hu Lin1,Zhao Lanbo1,Han Jie1

Affiliation:

1. School of Automation, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Deep generative models are becoming a tool of choice for exploring the molecular space. One important application area of deep generative models is the reverse design of drug compounds for given attributes (solubility, ease of synthesis, etc.). Although there are many generative models, these models cannot generate specific intervals of attributes. This paper proposes a AC-ModNet model that effectively combines VAE with AC-GAN to generate molecular structures in specific attribute intervals. The AC-ModNet is trained and evaluated using the open 250K ZINC dataset. In comparison with related models, our method performs best in the FCD and Frag model evaluation indicators. Moreover, we prove the AC-ModNet created molecules have potential application value in drug design by comparing and analyzing them with medical records in the PubChem database. The results of this paper will provide a new method for machine learning drug reverse design.

Publisher

MDPI AG

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3