Sex makes them sleepy: host reproductive status induces diapause in a parasitoid population experiencing harsh winters

Author:

Tougeron K.ORCID,Brodeur J.,van Baaren J.,Renault D.,Le Lann C.

Abstract

AbstractWhen organisms coevolve, any change in one species can induce phenotypic changes in traits and ecology of the other species. The role such interactions play in ecosystems is central, but their mechanistic bases remain underexplored. Upper trophic level species have to synchronize their life-cycle to both abiotic conditions and to lower trophic level species’ phenology and phenotypic variations. We tested the effect of host seasonal strategy on parasitoid diapause induction by using a holocyclic clone of the pea aphidAcyrthosiphon pisumproducing asexual and sexual morphs that are viviparous females (i.e. laying embryos) and oviparous females (laying eggs), respectively, the latter being only present at the end of the growing season.Aphidius erviparasitoids from populations of contrasted climatic origin (harsh vs. mild winter areas) were allowed to parasitize each morph in a split-brood design and developing parasitoids were next reared under either fall-like or summer-like temperature-photoperiod conditions. We next examined aspects of the host physiological state by comparing the relative proportion of forty-seven metabolites and lipid reserves in both morphs produced under the same conditions. We found that oviparous morphs are cuesper sefor diapause induction; parasitoids entered diapause at higher levels when developing in oviparous hosts (19.4 ± 3.0%) than in viviparous ones (3.6 ± 1.3%), under summer-like conditions (i.e., when oviparous aphids appear in the fields). This pattern was only observed in parasitoids from the harsh winter area since low diapause levels were observed in the other population, suggesting local adaptations to overwintering cues. Metabolomics analyses show parasitoids’ response to be mainly influenced by the host’s physiology, with higher proportion of polyols and sugars, and more fat reserves being found in oviparous morphs. Host quality thus varies across the seasons and represents one of the multiple environmental parameters affecting parasitoid diapause. Our results underline strong coevolutionary processes between hosts and parasitoids in their area of origin, likely leading to phenological synchronization, and we point out the importance of such bottom-up effects for trait expression, and for the provision of ecosystem services such as biological control in the context of climate change.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3