Graphene-based thin film microelectrode technology forin vivohigh resolution neural recording and stimulation

Author:

Viana Damià,Walston Steven T.,Illa Xavier,Valle Jaume del,Hayward Andrew,Dodd Abbie,Loret Thomas,Prats-Alfonso Elisabet,de la Oliva Natàlia,Palma Marie,Corro Elena del,Rodríguez-Meana Bruno,Pilar Bernicola María del,Rodríguez-Lucas Elisa,Gener Thomas A.,de la Cruz Jose Manuel,Torres-Miranda Miguel,Duvan Fikret Taygun,Ria Nicola,Sperling Justin,Martí-Sánchez Sara,Spadaro Maria Chiara,Hébert Clément,Masvidal-Codina Eduard,Savage Sinead,Arbiol Jordi,Guimerà-Brunet Anton,Puig M. Victoria,Navarro Xavier,Yvert Blaise,Kostarelos Kostas,Garrido Jose A.

Abstract

AbstractNeuroprosthetic technology aims to restore nervous system functionality in cases of severe damage or degeneration by recording and stimulating the electrical activity of the neural tissue. One of the key factors determining the quality of the neuroprostheses is the electrode material used to establish electrical communication with the neural tissue, which is subject to strict electrical, electrochemical, and mechanical specifications as well as biological and microfabrication compatibility requirements. This work presents a nanoporous graphene-based thin film technology and its engineering to form flexible neural implants. Bench measurements show that the developed microelectrodes offer low impedance and high charge injection capacity throughout millions of pulses. In vivo electrode performance was assessed in rodents both from brain surface and intracortically showing high-fidelity recording performance, while stimulation performance was assessed with an intrafascicular implant that demonstrated low current thresholds and high selectivity for activating subsets of axons within the sciatic nerve. Furthermore, the tissue biocompatibility of the devices was validated by chronic epicortical and intraneural implantation. Overall, this works describes a novel graphene-based thin film microelectrode technology and demonstrates its potential for high-precision neural interfacing in both recording and stimulation applications.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. Cochlear implants

2. Twenty-five years of deep brain stimulation: celebrations and apprehensions;Mov Disord,2012

3. Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses

4. Dhillon, G. S. & Horch, K. W. Neuroprosthetics -Theory And Practice. (World Scientific, 2004).

5. Chae, M. S. , Yang, Z. & Liu, W. Implantable Neural Prostheses 2. Techniques and Engineering Approaches (2010).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3