Predicting disordered regions driving phase separation of proteins under variable salt concentration

Author:

Meca Esteban,Fritsch Anatol W.ORCID,Iglesias-Artola Juan M.,Reber Simone,Wagner Barbara

Abstract

ABSTRACTWe investigate intrinsically disordered regions (IDRs) of phase separating proteins regarding their impact on liquid-liquid phase separation (LLPS) of the full protein. Our theoretical approach uses a mean-field theory that accounts for sequence-dependent electrostatic interactions via a random-phase approximation (RPA) and in addition allows for variable salt concentration for the condensed and dilute protein phases. The numerical solution of the complete phase diagrams together with the tie lines that we derive for this model system leaves two parameters to be determined by fitting experimental data on concentrations of all species involved in the system. For our comparisons, we focus on two proteins, PGL-3 and FUS, known to undergo LLPS. For PGL-3 we predict that its long IDR near the C-terminus promotes LLPS, which we validate through direct comparison within vitroexperimental results under the same physiological conditions. For the structurally more complex protein FUS the role of the low complexity (LC) domain in LLPS has been intensively studied. Apart from the LC domain we here investigate theoretically two IDRs, one near the N-terminus and another near the C-terminus. Our theoretical analysis of these domains predict that the IDR at the N-terminus (aa 1-285) is the main driver of LLPS of FUS by comparison toin vitroexperiments of the full length protein under the same physiological temperature and salt conditions.SIGNIFICANCEIntrinsically disordered proteins are drivers of cellular liquid-liquid phase separation. However, it remains a challenge to directly predict the phase behaviour of a protein based on its primary sequence, and under physiological conditions. We present a random-phase approximation that allows for variable salt concentration and thus accounts for salt partitioning. We use this to link the sequence of the disordered regions with the behaviour of the complete protein through direct comparisons toin vitrophase-separation assays. In particular, for FUS we determine the exact region responsible for LLPS, weighting in a long-standing debate.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3