The liquid structure of elastin

Author:

Rauscher Sarah12ORCID,Pomès Régis12ORCID

Affiliation:

1. Molecular Medicine, The Hospital for Sick Children, Toronto, Canada

2. Department of Biochemistry, University of Toronto, Toronto, Canada

Abstract

The protein elastin imparts extensibility, elastic recoil, and resilience to tissues including arterial walls, skin, lung alveoli, and the uterus. Elastin and elastin-like peptides are hydrophobic, disordered, and undergo liquid-liquid phase separation upon self-assembly. Despite extensive study, the structure of elastin remains controversial. We use molecular dynamics simulations on a massive scale to elucidate the structural ensemble of aggregated elastin-like peptides. Consistent with the entropic nature of elastic recoil, the aggregated state is stabilized by the hydrophobic effect. However, self-assembly does not entail formation of a hydrophobic core. The polypeptide backbone forms transient, sparse hydrogen-bonded turns and remains significantly hydrated even as self-assembly triples the extent of non-polar side chain contacts. Individual chains in the assembly approach a maximally-disordered, melt-like state which may be called the liquid state of proteins. These findings resolve long-standing controversies regarding elastin structure and function and afford insight into the phase separation of disordered proteins.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Hospital for Sick Children

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference97 articles.

1. Optical properties of single elastin fibres indicate random protein conformation;Aaron;Nature,1980

2. Elastin-based materials;Almine;Chemical Society Reviews,2010

3. Thermoelasticity of swollen elastin networks at constant composition;Andrady;Biopolymers,1980

4. Self-aggregation characteristics of recombinantly expressed human elastin polypeptides;Bellingham;Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology,2001

5. Molecular dynamics with coupling to an external bath;Berendsen;Journal of Chemical Physics,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3