The AMPK-TORC1 signalling axis regulates caffeine-mediated DNA damage checkpoint override and cell cycle effects in fission yeast

Author:

Alao John. P.,Rallis CharalamposORCID

Abstract

AbstractCaffeine is among the most widely consumed neuroactive compounds in the world. It induces DNA damage checkpoint signalling override and enhances sensitivity to DNA damaging agents. However, the precise underlying mechanisms have remained elusive. The Ataxia Telangiectasia Mutated (ATM) orthologue Rad3 has been proposed as the cellular target of caffeine. Nevertheless, recent studies suggest that the Target of Rapamycin Complex 1 (TORC1) might be the main target. In the fission yeastSchizosaccharomyces pombe(S. pombe), caffeine mimics the effects of activating the Sty1-regulated stress response and the AMP-Activated Protein Kinase (AMPK) homologue Ssp1-Ssp2 pathways on cell cycle progression. Direct inhibition of TORC1 with the ATP-competitive inhibitor torin1, is sufficient to override DNA damage checkpoint signalling. It is, therefore, plausible, that caffeine modulates cell cycle kinetics by indirectly suppressing TORC1 through activation of Ssp2. Deletion ofssp1andssp2suppresses the effects of caffeine on cell cycle progression. In contrast, direct inhibition of TORC1 enhances DNA damage sensitivity in these mutants. These observations suggest that caffeine overrides DNA damage signalling, in part, via the indirect inhibition of TORC1 through Ssp2 activation. The AMPK-mTORC1 signalling axis plays an important role in aging and disease and presents a potential target for chemo- and radio-sensitization. Our results provide a clear understanding of the mechanism of how caffeine modulates cell cycle progression in the context of Ssp1-AMPKαSsp2-TORC1 signalling activities and can potentially aid in the development of novel dietary regimens, therapeutics, and chemo-sensitizing agents.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3