Antifungal tolerance and resistance emerge at distinct drug concentrations and rely upon different aneuploid chromosomes

Author:

Yang FengORCID,Scopel Eduardo FC,Li Hao,Sun Liu-liu,Kawar Nora,Cao Yong-bing,Jiang Yuan-Ying,Berman JudithORCID

Abstract

AbstractAntifungal drug tolerance is a response distinct from resistance, in which cells grow slowly above the minimum inhibitory drug concentration (MIC). Here we found that the majority (69.2%) of 133Candida albicansclinical isolates, including standard lab strain SC5314, exhibitedtemperature-enhancedtolerance at 37°C and 39°C, and were not tolerant at 30°C. Other isolates were eitheralwaystolerant (23.3%) ornevertolerant (7.5%) at these three temperatures, suggesting that tolerance requires different physiological processes in different isolates. At supra-MIC fluconazole concentrations (8-128 μg/ml), tolerant colonies emerged rapidly at a frequency of ~10−3. In liquid passages over a broader range of fluconazole concentrations (0.25-128 μg/ml), tolerance emerged rapidly (within one passage) at supra-MIC concentrations. By contrast, resistance appeared at sub-MIC concentrations after 5 or more passages. Of 155 adaptors that evolved higher tolerance, all carried one of several recurrent aneuploid chromosomes, often including chromosome R, alone or in combination with other chromosomes. Furthermore, loss of these recurrent aneuploidies was associated with a loss of acquired tolerance, indicating that specific aneuploidies confer fluconazole tolerance. Thus, genetic background and physiology, and the degree of drug stress (above or below the MIC) influence the evolutionary trajectories and dynamics with which antifungal drug resistance or tolerance emerges.ImportanceAntifungal drug tolerance differs from drug resistance: tolerant cells grow slowly in drug, while resistant cells usually grow well, due to mutations in a few known genes. More than half ofCandida albicansclinical isolates have higher tolerance at body temperature than they do at the lower temperatures used for most lab experiments. This implies that different isolates achieve drug tolerance via several cellular processes. When we evolved different strains at a range of high drug concentrations above inhibitory levels, tolerance emerged rapidly and at high frequency (one in 1000 cells) while resistance only appeared later at very low drug concentrations. An extra copy of all or part of chromosome R was associated with tolerance, while point mutations or different aneuploidies were seen with resistance. Thus, genetic background and physiology, temperature, and drug concentration all influence how drug tolerance or resistance evolves.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3