Starfysh reveals heterogeneous spatial dynamics in the breast tumor microenvironment

Author:

He Siyu,Jin Yinuo,Nazaret Achille,Shi Lingting,Chen Xueer,Rampersaud Sham,Dhillon Bahawar S.,Valdez Izabella,Friend Lauren E,Fan Joy Linyue,Park Cameron Y,Mintz Rachel,Lao Yeh-Hsing,Carrera David,Fang Kaylee W,Mehdi Kaleem,Rohde Madeline,McFaline-Figueroa José L.,Blei David,Leong Kam W.,Rudensky Alexander Y,Plitas George,Azizi Elham

Abstract

AbstractSpatially-resolved gene expression profiling provides valuable insight into tissue organization and cell-cell crosstalk; however, spatial transcriptomics (ST) lacks single-cell resolution. Current ST analysis methods require single-cell RNA sequencing data as a reference for a rigorous interpretation of cell states and do not utilize associated histology images. Significant sample variation further complicates the integration of ST datasets, which is essential for identifying commonalities across tissues or altered cellular wiring in disease. Here, we present Starfysh, the first comprehensive computational toolbox for joint modeling of ST and histology data, dissection of refined cell states, and systematic integration of multiple ST datasets from complex tissues. Starfysh uses an auxiliary deep generative model that incorporates archetypal analysis and any known cell state markers to avoid the need for a single-cell-resolution reference in characterizing known or novel tissue-specific cell states. Additionally, Starfysh improves the characterization of spatial dynamics in complex tissues by leveraging histology images and enables the comparison of niches as spatial “hubs” across tissues. Integrative analysis of primary estrogen receptor-positive (ER+) breast cancer, triple-negative breast cancer (TNBC), and metaplastic breast cancer (MBC) tumors using Starfysh led to the identification of heterogeneous patient- and disease-specific hubs as well as a shared stromal hub with varying spatial orientation. Our results show the ability to delineate the spatial co-evolution of tumor and immune cell states and their crosstalk underlying intratumoral heterogeneity in TNBC and revealed metabolic reprogramming shaping immunosuppressive hubs in aggressive MBC. Starfysh is publicly available (https://github.com/azizilab/starfysh).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3