Conformational changes in the essentialE. coliseptal cell wall synthesis complex suggest an activation mechanism

Author:

Britton Brooke M.ORCID,Yovanno Remy A.ORCID,Costa Sara F.,McCausland JoshuaORCID,Lau Albert Y.ORCID,Xiao JieORCID,Hensel ZachORCID

Abstract

ABSTRACTThe bacterial divisome, a macromolecular machine that is composed of more than thirty proteins inE. coli, orchestrates the essential process of cell wall constriction during cell division. Novel antimicrobial strategies can target protein-protein interactions within the divisome and will benefit from insights into divisome structure and dynamics. In this work, we combined structure prediction, molecular dynamics simulation, single-molecule imaging, and mutagenesis to construct a model of the core complex of theE. colidivisome composed of the essential septal cell wall synthase complex formed by FtsW and FtsI, and its regulators FtsQ, FtsL, FtsB, and FtsN. We observed extensive interactions in four key regions in the periplasmic domains of the complex. FtsQ, FtsL, and FtsB scaffold FtsI in an extended conformation with the FtsI transpeptidase domain lifted away from the membrane through interactions among the C-terminal domains. FtsN binds between FtsI and FtsL in a region rich in residues with superfission (activating) and dominant negative (inhibitory) mutations. Mutagenesis experimentsin celluloandin silicorevealed that the essential domain of FtsN functions as a tether to tie FtsI and FtsL together, impacting interactions between the anchor-loop of FtsI and the putative catalytic region of FtsW, suggesting a mechanism of how FtsN activates the cell wall synthesis activities of FtsW and FtsI.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3