Kinetochore microtubules flux poleward along fixed centrosome-anchored microtubules during the metaphase ofC. elegansone-cell embryo

Author:

Soler NinaORCID,Chesneau LaurentORCID,Bouvrais HélèneORCID,Pastezeur SylvainORCID,Marrec Loïc LeORCID,Pecreaux JacquesORCID

Abstract

AbstractThe microtubule array, assembled into the mitotic spindle, polymerises from the centrosomes and the chromosomes in many organisms. Their plus ends alternate between growing and shrinking. This dynamic instability plays a key role in pulling on the kinetochores to check the spindle assembly and correct the errors in chromosome attachments. In addition, the minus ends at centrosomes can undergo depolymerisation coordinated with the polymerisation of the plus ends at the kinetochores. Such a mechanism, among others, creates treadmilling,id esta net poleward movement of microtubules called poleward flux. This flux is involved in many roles, chromosome congression in prometaphase, chromosome misattachment detection and correction, spindle length maintenance in metaphase, and synchronous segregation of sister chromatids in anaphase. Interestingly, no poleward flux was measured in theCaenorhabditis eleganssingle-cell embryo, despite it is equipped with all homologous proteins involved in this mechanism in other organisms. To investigate this peculiarity, we labelled the microtubules and photobleached them in a rectangular region. Surprisingly, we observed that both edges of the bleached zone (fronts) move inwards, closing the dark area. However, the middle of the bleached zone does not move clearly, confirming the absence of a global poleward flow. The dynamics of the microtubules emanating from the centrosomes combined with the diffraction due to microscopy imaging account for the apparent movement of the front on the centrosome side. Therefore, we suggest no flux of the centrosome-anchored (spindle) microtubules. In contrast, on the chromosome side, we observed a front moving poleward, faster than the one on the other side, and dependent on proteins ensuring the attachment and growth of microtubules at kinetochores, NDC-80, CLS-2CLASP, and ZYG-9XMAP215. Besides, we found that the depletion of the depolymerase KLP-7MCAKdoes not impair this poleward recovery. Finally, the faster recovery is restricted to the spindle region close to the chromosomes. Therefore, we suggest that the kinetochore microtubules undergo a poleward flux, moving with respect to spindle microtubules. Because the kinetochore microtubules are shorter than the half-spindle, this flux is localised close to the chromosomes. Furthermore, it may not rely on treadmilling as KLP-7MCAKis dispensable. This spatially restricted flux found in the nematode may be related to the slow elongation of the spindle during metaphase and may buffer the strong pulling forces exerted by the cortical force generators at the spindle poles.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3