Estimating and interpreting nonlinear receptive fields of sensory responses with deep neural network models

Author:

Keshishian MenouaORCID,Akbari Hassan,Khalighinejad Bahar,Herrero Jose,Mehta Ashesh D.,Mesgarani Nima

Abstract

AbstractSensory processing by neural circuits includes numerous nonlinear transformations that are critical to perception. Our understanding of these nonlinear mechanisms, however, is hindered by the lack of a comprehensive and interpretable computational framework that can model and explain nonlinear signal transformations. Here, we propose a data-driven framework based on deep neural network regression models that can directly learn any nonlinear stimulus-response mapping. A key component of this approach is an analysis method that reformulates the exact function of the trained neural network as a collection of stimulus-dependent linear functions. This locally linear receptive field interpretation of the network function enables straightforward comparison with conventional receptive field models and uncovers nonlinear encoding properties. We demonstrate the efficacy of this framework by predicting the neural responses recorded invasively from the auditory cortex of neurosurgical patients as they listened to speech. Our method significantly improves the prediction accuracy of auditory cortical responses particularly in nonprimary areas. Moreover, interpreting the functions learned by neural networks uncovered three distinct types of nonlinear transformations of speech that varied considerably in primary and nonprimary auditory regions. By combining two desired properties of a computational sensory-response model; the ability to capture arbitrary stimulus-response mappings and maintaining model interpretability, this data-driven method can lead to better neurophysiological models of the sensory processing.

Publisher

Cold Spring Harbor Laboratory

Reference91 articles.

1. THE RECEPTIVE FIELDS OF OPTIC NERVE FIBERS;Am J Physiol Content [Internet],1940

2. Receptive fields of single neurones in the cat’s striate cortex;J Physiol [Internet],1959

3. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex;J Physiol [Internet],1962

4. An electrophysiological study of odour similarities of homologous substances;J Physiol [Internet],1966

5. Encoding of olfactory information with oscillating neural assemblies;Science [Internet],1994

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3