Bridging the TB data gap: in silico extraction of rifampicin-resistant tuberculosis diagnostic test results from whole genome sequence data

Author:

Ng Kamela Charmaine S.ORCID,Ngabonziza Jean Claude S.,Lempens Pauline,de Jong Bouke Catherine,van Leth Frank,Meehan Conor Joseph

Abstract

AbstractBackgroundMycobacterium tuberculosis rapid diagnostic tests (RDTs) are widely employed in routine laboratories and national surveys for detection of rifampicin-resistant (RR)-TB. However, as next generation sequencing technologies have become more commonplace in research and surveillance programs, RDTs are being increasingly complemented by whole genome sequencing (WGS). While comparison between RDTs is difficult, all RDT results can be derived from WGS data. This can facilitate continuous analysis of RR-TB burden regardless of the data generation technology employed. By converting WGS to RDT results, we enable comparison of data with different formats and sources particularly for low and middle income high TB burden countries that employ different diagnostic algorithms for drug resistance surveys. This allows national TB control programs (NTPs) and epidemiologists to utilize all available data in the setting for improved RR-TB surveillance.MethodsWe developed the Python-based MTB Genome to Test (MTBGT) tool that transforms WGS-derived data into laboratory-validated results of the primary RDTs – Xpert MTB/RIF, XpertMTB/RIF Ultra, GenoType MDRTBplus v2.0, and GenoscholarNTM+MDRTB II. The tool was validated through RDT results of RR-TB strains with diverse resistance patterns and geographic origins and applied on routine-derived WGS data.ResultsThe MTBGT tool correctly transformed the SNP data into the RDT results and generated tabulated frequencies of the RDT probes as well as rifampicin susceptible cases. The tool supplemented the RDT probe reactions output with the RR-conferring mutation based on identified SNPs. The MTBGT tool facilitated continuous analysis of RR-TB and Xpert probe reactions from different platforms and collection periods in Rwanda.ConclusionOverall, the MTBGT tool allows low and middle income countries to make sense of the increasingly generated WGS in light of the readily available RDT results, and assess whether currently implemented RDTs adequately detect RR-TB in their setting. With its feature to transform WGS to RDT results and facilitate continuous RR-TB data analysis, the MTBGT tool may bridge the gap between and among data from periodic surveys, continuous surveillance, research, and routine tests, and may be integrated within the existing national connectivity platform for use by the NTP and epidemiologists to improve setting-specific RR-TB control. The MTBGT source code and accompanying documentation is available at https://github.com/KamelaNg/MTBGT.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3