Author:
Diaz Soria Carmen Lidia,Lee Jayhun,Chong Tracy,Coghlan Avril,Tracey Alan,Young Matthew D,Andrews Tallulah,Hall Christopher,Ng Bee Ling,Rawlinson Kate,Doyle Stephen R.,Leonard Steven,Lu Zhigang,Bennett Hayley M,Rinaldi Gabriel,Newmark Phillip A.,Berriman Matthew
Abstract
AbstractOver 250 million people suffer from schistosomiasis, a tropical disease caused by parasitic flatworms known as schistosomes. Humans become infected by free-swimming, water-borne larvae, which penetrate the skin. The earliest intra-mammalian stage, called the schistosomulum, undergoes a series of developmental transitions. These changes are critical for the parasite to adapt to its new environment as it navigates through host tissues to reach its niche, where it will grow to reproductive maturity. Unravelling the mechanisms that drive intra-mammalian development requires knowledge of the spatial organisation and transcriptional dynamics of different cell types that comprise the schistomulum body. To fill these important knowledge gaps, we performed single-cell RNA sequencing on two-day old schistosomula of Schistosoma mansoni. We identified likely gene expression profiles for muscle, nervous system, tegument, parenchymal/primordial gut cells, and stem cells. In addition, we validated cell markers for all these clusters by in situ hybridisation in schistosomula and adult parasites. Taken together, this study provides a comprehensive cell-type atlas for the early intra-mammalian stage of this devastating metazoan parasite.
Publisher
Cold Spring Harbor Laboratory
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献