The esophageal gland mediates host immune evasion by the human parasiteSchistosoma mansoni

Author:

Lee JayhunORCID,Chong Tracy,Newmark Phillip A.ORCID

Abstract

Schistosomes are parasitic flatworms that cause schistosomiasis, a neglected tropical disease affecting over 200 million people. Schistosomes develop multiple body plans while navigating their complex life cycle, which involves two different hosts: a mammalian definitive host and a molluscan intermediate host. Their survival and propagation depend upon proliferation and differentiation of stem cells necessary for parasite homeostasis and reproduction. Infective larvae released from snails carry a handful of stem cells that serve as the likely source of new tissues as the parasite adapts to life inside the mammalian host; however, the role of these stem cells during this critical life cycle stage remains unclear. Here, we characterize stem cell fates during early intramammalian development. Surprisingly, we find that the esophageal gland, an accessory organ of the digestive tract, develops before the rest of the digestive system is formed and blood feeding is initiated, suggesting a role in processes beyond nutrient uptake. To explore such a role, we examine schistosomes that lack the esophageal gland due to knockdown of a forkhead-box transcription factor,Sm-foxA, which blocks development and maintenance of the esophageal gland, without affecting the development of other somatic tissues. Intriguingly, schistosomes lacking the esophageal gland die after transplantation into naive mice, but survive in immunodeficient mice lacking B cells. We show that parasites lacking the esophageal gland are unable to lyse ingested immune cells within the esophagus before passing them into the gut. These results unveil an immune-evasion mechanism mediated by the esophageal gland, which is essential for schistosome survival and pathogenesis.

Funder

Howard Hughes Medical Institute

Morgridge Institute for Research

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference71 articles.

1. Halting harmful helminths

2. Schistosomiasis;McManus;Nat. Rev. Dis. Primers,2018

3. The saga of schistosome migration and attrition

4. P. F. Basch , Schistosomes: Development, Reproduction, and Host Relations, (Oxford University Press, 1991).

5. The immunobiology of schistosomiasis

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3