Abstract
AbstractThe application of network science to biology has advanced our understanding of the metabolism of individual organisms and the organization of ecosystems but has scarcely been applied to life at a planetary scale. To characterize planetary-scale biochemistry, we constructed biochemical networks using a global database of 28,146 annotated genomes and metagenomes, and 8,658 cataloged biochemical reactions. We uncover scaling laws governing biochemical diversity and network structure shared across levels of organization from individuals to ecosystems, to the biosphere as a whole. Comparing real biochemical networks to random chemical networks reveals the observed biological scaling is not solely a product of the biochemistry shared across life on Earth. Instead, it emerges due to how the global inventory of biochemical reactions is partitioned into individuals. We show the three domains of life are topologically distinguishable, with > 80% accuracy in predicting evolutionary domain based on biochemical network size and average topology. Taken together our results point to a deeper level of organization in biochemical networks than what has been understood so far.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献