Scaling laws in enzyme function reveal a new kind of biochemical universality

Author:

Gagler Dylan C.,Karas Bradley,Kempes Chris,Goldman Aaron D.,Kim Hyunju,Walker Sara ImariORCID

Abstract

AbstractAll life on Earth is unified by its use of a shared set of component chemical compounds and reactions, providing a detailed model for universal biochemistry. However, this notion of universality is specific to currently observed biochemistry and does not allow quantitative predictions about examples not yet observed. Here we introduce a more generalizable concept of biochemical universality, more akin to the kind of universality discussed in physics. Using annotated genomic datasets including an ensemble of 11955 metagenomes and 1282 archaea, 11759 bacteria and 200 eukaryotic taxa, we show how four of the major enzyme functions - the oxidoreductases, transferases, hydrolases and ligases - form universality classes with common scaling behavior in their relative abundances observed across the datasets. We verify these universal scaling laws are not explained by the presence of compounds, reactions and enzyme functions shared across all known examples of life. We also demonstrate how a consensus model for the last universal common ancestor (LUCA) is consistent with predictions from these scaling laws, with the exception of ligases and transferases. Our results establish the existence of a new kind of biochemical universality, independent of the details of the component chemistry, with implications for guiding our search for missing biochemical diversity on Earth, or other for any biochemistries that might deviate from the exact chemical make-up of life as we know it, such as at the origins of life, in alien environments, or in the design of synthetic life.

Publisher

Cold Spring Harbor Laboratory

Reference24 articles.

1. The universal nature of biochemistry

2. Comparative genomics, minimal gene-sets and the last universal common ancestor

3. Goldenfeld, N. Lectures On Phase Transitions And The Renormalization Group. (CRC Press, 2018).

4. West, G. B. Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life, in Organisms. (PENGUIN Books, 2017).

5. The Scales That Limit: The Physical Boundaries of Evolution;Frontiers in Ecology and Evolution,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3