Deconstructing taxa x taxa x environment interactions in the microbiota: A theoretical examination

Author:

Yitbarek Senay,Guittar John,Knutie Sarah A.,Ogbunugafor C. Brandon

Abstract

AbstractA major objective of microbial ecology is to identify how the composition of gut microbial taxa shapes host phenotypes. However, most studies focus solely on community-level patterns and pairwise interactions and ignore the potentially significant effects of higher-order interactions involving three or more component taxa.Studies on higher-order interactions among microbial taxa are scarce for many reasons, including experimental intractability, daunting diversity and complexity of many microbial systems, and the potential confounding role of the environment. Moreover, we still lack the empirical and statistical tools to isolate and understand the role of higher-order interactions on the host.Here, we apply a mathematical approach to quantifying the effects of higher-order interactions among taxa on host infection risk. To do so, we adapt the Hadamard-Walsh method recently used in evolutionary genetics to quantify the nonlinear effects of mutations on fitness. We apply our approach to an in silico dataset built to resemble a population of insect hosts with gut-associated microbial communities at risk of infection from an intestinal parasite. Critically, we examine these interactions across a breadth of environmental contexts, using nutrient content of the insect diet as a model for context.We find that the effect of higher-order interactions is considerable and can change appreciably across environmental contexts. Strikingly, the relative eminence of different orders (pairwise vs. third order, fourth order, and fifth order) changes as a function of environmental context. Furthermore, we show–in our theoretical microcosm–that higher-order interactions can stabilize community structure thereby reducing host susceptibility to parasite invasion.Our approach illustrates how incorporating the effects of higher-order interactions among gut microbiota across environments can be essential for understanding their effects on host phenotypes. We conclude that higher-order interactions among taxa can profoundly shape important organismal phenotypes, and they deserve greater attention in host-associated microbiome studies.

Publisher

Cold Spring Harbor Laboratory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3