Abstract
AbstractCells encounter a wide variety of physical and chemical cues when navigating their native environments. However, their response to multiple simultaneous cues is not yet clear. In particular, the influence of topography, in the presence of a chemotactic gradient, on their migratory behavior is understudied. Here, we investigate the effects of topographical guidance on highly motile amoeboid cell migration (topotaxis) generated by asymmetrically placed micropillars. The micropillar field allows for an additional, natural chemotactic gradient in two different directions, thereby revealing the relevance of topotaxis in the presence of cell migration directed by chemical gradients (chemotaxis). Interestingly, we found that the topotactic drift generated by the pillar field is conserved during chemotaxis. We show that the drifts generated by both these cues add up linearly. A coarse-grained analysis as a function of pillar spacing subsequently revealed that the strength and direction of the topotactic drift is determined by (i) the pore size, (ii) space between pores, and (iii) the effective diffusion constant of the cells. Finally, we argue that topotaxis must be conserved during chemotaxis, as it is an emergent property of both the asymmetric properties of the pillar field and the inherent stochasticity of (biased) amoeboid migration.
Publisher
Cold Spring Harbor Laboratory
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献