Author:
Huang Yi-Fei,Gulko Brad,Siepel Adam
Abstract
AbstractAcross many species, a large fraction of genetic variants that influence phenotypes of interest is located outside of protein-coding genes, yet existing methods for identifying such variants have poor predictive power. Here, we introduce a new computational method, called LINSIGHT, that substantially improves the prediction of noncoding nucleotide sites at which mutations are likely to have deleterious fitness consequences, and which therefore are likely to be phenotypically important. LINSIGHT combines a simple neural network for functional genomic data with a probabilistic model of molecular evolution. The method is fast and highly scalable, enabling it to exploit the “Big Data” available in modern genomics. We show that LINSIGHT outperforms the best available methods in identifying human noncoding variants associated with inherited diseases. In addition, we apply LINSIGHT to an atlas of human enhancers and show that the fitness consequences at enhancers depend on cell-type, tissue specificity, and constraints at associated promoters.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献