Author:
Praveen Kumar G.,Desai Suseelendra,Moerschbacher Bruno M.,Gueddari Nour Eddine-El
Abstract
AbstractInoculation of crop plants with PGPR has in a large number of investigations resulted in increased plant growth and yield both in the greenhouse and in the field. This plant growth promoting effect of bacteria could be due to net result of synergistic effect of various pgpr traits that they exert in the rhizosphere region of the plant. Four (04) bacterial strain of fluorescent Pseudomonas spp. viz. P1, P17, P22 and P28 were identified previously for their plant growth promoting nature and abiotic stress tolerance and selected further to assess their chitinolytic activity and growth promotion on sorghum in combination with chitosans of low and high degree of acetylation. It was found that P1 has no chitin degrading nature and rest of the three strains have this property. When studied for their ability to grow in presence of chitosans of DA 1.6, 11, 35 and 56% all the strains showed growth in presence of chitosans. Seed bacterization of sorghum seeds with 04 bacterial strains in the presence and absence of chitosans (both low and high DA) and assessment of plant growth promotion after 15 days of sowing showed that P17+DA 56% chitosan combination showed higher growth of seedlings in plant growth chamber with highest root length of 25.9 cm, highest shoot length of 32.1 cm and dry mass of 132.7 mg/ plant. In P17+DA 56% chitosan treated seedlings various defence enzymes and PR-proteins were found to be present in highest quantities as compared to P1 and un-inoculated controls. Since this strain showed highest growth promotion of sorghum seedlings chitin-chitosan modifying enzyme (CCME) of this strain was partially characterized using different proteomic tools and techniques. CCME of P17 had one active polypeptide with a Pi in the range of 3.0-4.0. The digestion pattern of acetylated and deacetylated chitosans showed that P17 enzyme has endochitinase activity. Substrate specificity assay showed that the enzyme had more specificity towards highly acetylated chitosans. Two dimensional PAGE and MS analysis of the protein revealed similarities of this enzyme with protein of Pseudomonas aeruginosa chitinase PA01 strain of GenBank. In conclusion, the study established the option of opening new possibilities for developing bacterial-chitosan (P17+DA 56% chitosan) product for plant growth promotion and induced systemic resistance in sorghum.
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献