Abstract
SUMMARYNeuronal development is a multistep process with different regulatory programs that shapes neurons to form dendrites, axons and synapses. To date, knowledge on neuronal development is largely based on murine data and largely restricted to the genomic and transcriptomic level. Advances in stem cell differentiation now enable the study of human neuronal development, and here we provide a mass spectrometry-based quantitative proteomic signature, at high temporal resolution, of human stem cell-derived neurons. To reveal proteomic changes during neuronal development we make use of two differentiation approaches, either by expression of neurogenin-2 (Ngn2) leading to glutamatergic induced neurons (iN) or via small molecule manipulations, leading to patterned motor neurons. Our analysis revealed key proteins that show significant expression changes (FDR <0.001) during neuronal differentiation. We overlay our proteomics data with available transcriptomic data during neuronal differentiation and show distinct, datatype-specific, signatures. Overall, we provide a rich resource of information on proteins associated with human neuronal development, and moreover, highlight several signaling pathways involved, such as Wnt and Notch.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献