Emerging proteomic approaches to identify the underlying pathophysiology of neurodevelopmental and neurodegenerative disorders

Author:

Murtaza Nadeem,Uy Jarryll,Singh Karun K.

Abstract

AbstractProteomics is the large-scale study of the total protein content and their overall function within a cell through multiple facets of research. Advancements in proteomic methods have moved past the simple quantification of proteins to the identification of post-translational modifications (PTMs) and the ability to probe interactions between these proteins, spatially and temporally. Increased sensitivity and resolution of mass spectrometers and sample preparation protocols have drastically reduced the large amount of cells required and the experimental variability that had previously hindered its use in studying human neurological disorders. Proteomics offers a new perspective to study the altered molecular pathways and networks that are associated with autism spectrum disorders (ASD). The differences between the transcriptome and proteome, combined with the various types of post-translation modifications that regulate protein function and localization, highlight a novel level of research that has not been appropriately investigated. In this review, we will discuss strategies using proteomics to study ASD and other neurological disorders, with a focus on how these approaches can be combined with induced pluripotent stem cell (iPSC) studies. Proteomic analysis of iPSC-derived neurons have already been used to measure changes in the proteome caused by patient mutations, analyze changes in PTMs that resulted in altered biological pathways, and identify potential biomarkers. Further advancements in both proteomic techniques and human iPSC differentiation protocols will continue to push the field towards better understanding ASD disease pathophysiology. Proteomics using iPSC-derived neurons from individuals with ASD offers a window for observing the altered proteome, which is necessary in the future development of therapeutics against specific targets.

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health,Developmental Biology,Developmental Neuroscience,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3