Parallel control of mechanosensory hair cell orientation by the PCP and Wnt pathways

Author:

Acedo Joaquin NavajasORCID,Voas Matthew G.,Alexander Richard,Woolley ThomasORCID,Unruh Jay R.ORCID,Li Hua,Moens CeciliaORCID,Piotrowski Tatjana

Abstract

ABSTRACTCell polarity plays a crucial role during development of vertebrates and invertebrates. Planar Cell Polarity (PCP) is defined as the coordinated polarity of cells within a tissue axis and is essential for processes such as gastrulation, neural tube closure or hearing. Wnt ligands can be instructive or permissive during PCP-dependent processes, and Wnt pathway mutants are often classified as PCP mutants due to the complexity and the similarities between their phenotypes. Our studies of the zebrafish sensory lateral line reveal that disruptions of the PCP and Wnt pathways have differential effects on hair cell orientations. While mutations in PCP genes cause random orientations of hair cells, mutations in Wnt pathway members induce hair cells to adopt a concentric pattern. We show that PCP signaling is normal in hair cells of Wnt pathway mutants and that the concentric hair cell phenotype is due to altered organization of the surrounding support cells. Thus, the PCP and Wnt pathways work in parallel, as separate pathways to establish proper hair cell orientation. Our data suggest that coordinated support cell organization is established during the formation of lateral line primordia, much earlier than the appearance of hair cells. Together, these finding reveal that hair cell orientation defects are not solely explained by defects in PCP signaling and that some hair cell phenotypes warrant reevaluation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparing Sensory Organs to Define the Path for Hair Cell Regeneration;Annual Review of Cell and Developmental Biology;2019-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3