Comparing statistical learning methods for complex trait prediction from gene expression

Author:

Arango Noah Klimkowski,Morgante FabioORCID

Abstract

AbstractAccurate prediction of complex traits is an important task in quantitative genetics that has become increasingly relevant for personalized medicine. Genotypes have traditionally been used for trait prediction using a variety of methods such as mixed models, Bayesian methods, penalized regressions, dimension reductions, and machine learning methods. Recent studies have shown that gene expression levels can produce higher prediction accuracy than genotypes. However, only a few prediction methods were used in these studies. Thus, a comprehensive assessment of methods is needed to fully evaluate the potential of gene expression as a predictor of complex trait phenotypes. Here, we used data from theDrosophilaGenetic Reference Panel (DGRP) to compare the ability of several existing statistical learning methods to predict starvation resistance from gene expression in the two sexes separately. The methods considered differ in assumptions about the distribution of gene effect sizes – ranging from models that assume that every gene affects the trait to more sparse models – and their ability to capture gene-gene interactions. We also used functional annotation (i.e., Gene Ontology (GO)) as an external source of biological information to inform prediction models. The results show that differences in prediction accuracy between methods exist, although they are generally not large. Methods performing variable selection gave higher accuracy in females while methods assuming a more polygenic architecture performed better in males. Incorporating GO annotations further improved prediction accuracy for a few GO terms of biological significance. Biological significance extended to the genes underlying highly predictive GO terms with different genes emerging between sexes. Notably, the Insulin-like Receptor (InR) was prevalent across methods and sexes. Our results confirmed the potential of transcriptomic prediction and highlighted the importance of selecting appropriate methods and strategies in order to achieve accurate predictions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3