Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans

Author:

Wray Naomi R12,Kemper Kathryn E1,Hayes Benjamin J3,Goddard Michael E45,Visscher Peter M12

Affiliation:

1. Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia

2. Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4067, Australia

3. Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, Queensland 4072, Australia

4. AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia

5. Faculty of Land and Food Resources, University of Melbourne, Parkville, Victoria, Australia

Abstract

Abstract Genomic estimated breeding values (GEBVs) in livestock and polygenic risk scores (PRS) in humans are conceptually similar; however, the between-species differences in linkage disequilibrium (LD) provide a fundamental point of distinction that impacts approaches to data analyses... In this Review, we focus on the similarity of the concepts underlying prediction of estimated breeding values (EBVs) in livestock and polygenic risk scores (PRS) in humans. Our research spans both fields and so we recognize factors that are very obvious for those in one field, but less so for those in the other. Differences in family size between species is the wedge that drives the different viewpoints and approaches. Large family size achievable in nonhuman species accompanied by selection generates a smaller effective population size, increased linkage disequilibrium and a higher average genetic relationship between individuals within a population. In human genetic analyses, we select individuals unrelated in the classical sense (coefficient of relationship <0.05) to estimate heritability captured by common SNPs. In livestock data, all animals within a breed are to some extent “related,” and so it is not possible to select unrelated individuals and retain a data set of sufficient size to analyze. These differences directly or indirectly impact the way data analyses are undertaken. In livestock, genetic segregation variance exposed through samplings of parental genomes within families is directly observable and taken for granted. In humans, this genomic variation is under-recognized for its contribution to variation in polygenic risk of common disease, in both those with and without family history of disease. We explore the equation that predicts the expected proportion of variance explained using PRS, and quantify how GWAS sample size is the key factor for maximizing accuracy of prediction in both humans and livestock. Last, we bring together the concepts discussed to address some frequently asked questions.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3