ClOneHORT: Approaches for Improved Fidelity in Generative Models of Synthetic Genomes

Author:

Laboulaye RolandORCID,Borda VictorORCID,Chen Shuo,North Kari E.ORCID,Kaplan Robert,O’Connor Timothy D.ORCID

Abstract

ABSTRACTMotivationDeep generative models have the potential to overcome difficulties in sharing individual-level genomic data by producing synthetic genomes that preserve the genomic associations specific to a cohort while not violating the privacy of any individual cohort member. However, there is significant room for improvement in the fidelity and usability of existing synthetic genome approaches.ResultsWe demonstrate that when combined with plentiful data and with population-specific selection criteria, deep generative models can produce synthetic genomes and cohorts that closely model the original populations. Our methods improve fidelity in the site-frequency spectra and linkage disequilibrium decay and yield synthetic genomes that can be substituted in downstream local ancestry inference analysis, recreating results with .91 to .94 accuracy.AvailabilityThe model described in this paper is freely available atgithub.com/rlaboulaye/clonehort.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3