Mexican Biobank advances population and medical genomics of diverse ancestries
Author:
Sohail MashaalORCID, Palma-Martínez María J., Chong Amanda Y.ORCID, Quinto-Cortés Consuelo D., Barberena-Jonas CarminaORCID, Medina-Muñoz Santiago G., Ragsdale Aaron, Delgado-Sánchez Guadalupe, Cruz-Hervert Luis Pablo, Ferreyra-Reyes Leticia, Ferreira-Guerrero Elizabeth, Mongua-Rodríguez Norma, Canizales-Quintero Sergio, Jimenez-Kaufmann Andrés, Moreno-Macías Hortensia, Aguilar-Salinas Carlos A.ORCID, Auckland Kathryn, Cortés Adrián, Acuña-Alonzo Víctor, Gignoux Christopher R.ORCID, Wojcik Genevieve L.ORCID, Ioannidis Alexander G.ORCID, Fernández-Valverde Selene L.ORCID, Hill Adrian V. S.ORCID, Tusié-Luna María Teresa, Mentzer Alexander J.ORCID, Novembre JohnORCID, García-García LourdesORCID, Moreno-Estrada AndrésORCID
Abstract
AbstractLatin America continues to be severely underrepresented in genomics research, and fine-scale genetic histories and complex trait architectures remain hidden owing to insufficient data1. To fill this gap, the Mexican Biobank project genotyped 6,057 individuals from 898 rural and urban localities across all 32 states in Mexico at a resolution of 1.8 million genome-wide markers with linked complex trait and disease information creating a valuable nationwide genotype–phenotype database. Here, using ancestry deconvolution and inference of identity-by-descent segments, we inferred ancestral population sizes across Mesoamerican regions over time, unravelling Indigenous, colonial and postcolonial demographic dynamics2–6. We observed variation in runs of homozygosity among genomic regions with different ancestries reflecting distinct demographic histories and, in turn, different distributions of rare deleterious variants. We conducted genome-wide association studies (GWAS) for 22 complex traits and found that several traits are better predicted using the Mexican Biobank GWAS compared to the UK Biobank GWAS7,8. We identified genetic and environmental factors associating with trait variation, such as the length of the genome in runs of homozygosity as a predictor for body mass index, triglycerides, glucose and height. This study provides insights into the genetic histories of individuals in Mexico and dissects their complex trait architectures, both crucial for making precision and preventive medicine initiatives accessible worldwide.
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference79 articles.
1. Mills, M. C. & Rahal, C. The GWAS Diversity Monitor tracks diversity by disease in real time. Nat. Genet. 52, 242–243 (2020). 2. Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet. 93, 278–288 (2013). 3. Hilmarsson, H., Kumar, A. S., Rastogi, R. & Bustamante, C. D. High resolution ancestry deconvolution for next generation genomic data. Preprint at bioRxiv https://doi.org/10.1101/2021.09.19.460980 (2021). 4. Browning, S. R. et al. Ancestry-specific recent effective population size in the Americas. PLoS Genet. 14, e1007385 (2018). 5. Gimbernat-Mayol, J., Mantes, A. D., Bustamante, C. D., Montserrat, D. M. & Ioannidis, A. G. Archetypal analysis for population genetics. PLoS Comput. Biol. 18, e1010301 (2022).
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|