Abstract
AbstractThe CRISPR-Cas system is a bacterial adaptative immune system which protects against infection by phages: viruses that infect bacteria. To develop immunity, bacteria integrate spacers — fragments of the invading nucleic acids — into their CRISPR array to serve as the basis for sequence-targeted DNA cleavage. However, upon infection, phages quickly take over the metabolism of the bacteria, leaving little time for the bacteria to acquire new spacers, transcribe them and use them to cut the invading DNA. To develop CRISPR immunity, bacteria must be safely exposed to phage DNA. Phage infection releases eDNA which could be involved in the development of CRISPR immunity. UsingS. thermophilusand phages 2972 and 858 as a model for CRISPR immunity, we show that eDNA is crucial to the development of optimal CRISPR immunity, as generation of phage-immune bacterial colonies decrease with eDNA digestion. Furthermore, it is phage eDNA specifically that impacts CRISPR immunity since its addition increases the generation of phage-immune colonies. We also show that the effect of eDNA is phage-specific, sequence specific and can even be traced to a region of the genome covering the early-expressed genes which differ between phages 2972 and 858. However, we also show that eDNA is not used as a source of genetic information for spacer acquisition. This suggests that the effect of eDNA involves a new mechanism of phage resistance. Moreover, the effect of eDNA is highly dependent on environmental conditions as variation in media suppliers are sufficient to interfere with this effect. These results link environmental conditions, specifically eDNA, to the CRISPR-Cas system, providing a better understanding of the context of the emergence of CRISPR immunity and could inform our understanding of the mechanisms through which bacteria detect the presence of phages before infection.
Publisher
Cold Spring Harbor Laboratory