Φ-Space: Continuous phenotyping of single-cell multi-omics data

Author:

Mao Jiadong,Deng Yidi,Lê Cao Kim-AnhORCID

Abstract

AbstractSingle-cell multi-omics technologies have empowered increasingly refined characterisation of the heterogeneity of cell populations. Automated cell type annotation methods have been developed to transfer cell type labels from well-annotated reference datasets to emerging query datasets. However, these methods suffer from some common caveats, including the failure to characterise transitional and novel cell states, sensitivity to batch effects and under-utilisation of phenotypic information other than cell types (e.g. sample source and disease conditions).We developed Φ-Space, a computational framework for the continuous phenotyping of single-cell multi-omics data. In Φ-Space we adopt a highly versatile modelling strategy to continuously characterise query cell identity in a low-dimensional phenotype space, defined by reference phenotypes. The phenotype space embedding enables various downstream analyses, including insightful visualisations, clustering and cell type labelling.We demonstrate through three case studies that Φ-Space (i) characterises developing and out-of-reference cell states; (ii) is robust against batch effects in both reference and query; (iii) adapts to annotation tasks involving multiple omics types; (iv) overcomes technical differences between reference and query.The versatility of Φ-Space makes it applicable to a wide range analytical tasks beyond cell type transfer, and its ability to model complex phenotypic variation will facilitate biological discoveries from different omics types.

Publisher

Cold Spring Harbor Laboratory

Reference43 articles.

1. Nature Review Genetics Editorial Board. A focus on single-cell omics [editorial]. Nat. Rev. Genet., 24(8), 2023.

2. Population-level integration of single-cell datasets enables multi-scale analysis across samples;Nat. Methods,2023

3. Yingxin Lin , Yue Cao , Elijah Willie , Ellis Patrick , and Jean Y H Yang . Atlas-scale single-cell multi-sample multi-condition data integration using scmerge2. Nat. Commun., 14(1), 2023.

4. David Lähnemann , Johannes Köster , Ewa Szczurek , Davis J McCarthy , Stephanie C Hicks , Mark D Robinson , Catalina A Vallejos , Kieran R Campbell , Niko Beerenwinkel , Ahmed Mahfouz , Luca Pinello , Pavel Skums , Alexandros Stamatakis , Camille Stephan-Otto Attolini , Samuel Aparicio , Jasmijn Baaijens , Marleen Balvert , Buys de Barbanson , Antonio Cappuccio , Giacomo Corleone , Bas E Dutilh , Maria Florescu , Victor Guryev , Rens Holmer , Katharina Jahn , Thamar Jessurun Lobo , Emma M Keizer , Indu Khatri , Szymon M Kielbasa , Jan O Korbel , Alexey M Kozlov , Tzu-Hao Kuo , Boudewijn P F Lelieveldt , Ion I Mandoiu , John C Marioni , Tobias Marschall , Felix Mölder , Amir Niknejad , Alicja Raczkowska , Marcel Reinders , Jeroen de Ridder , Antoine-Emmanuel Saliba , Antonios Somarakis , Oliver Stegle , Fabian J Theis , Huan Yang , Alex Zelikovsky , Alice C McHardy , Benjamin J Raphael , Sohrab P Shah , and Alexander Schönhuth . Eleven grand challenges in single-cell data science. Genome Biol., 21(1), 2020.

5. Fast and accurate short read alignment with Burrows-Wheeler transform

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3