Annotation-free multi-organ anomaly detection in abdominal CT using free-text radiology reports: A multi-center retrospective study

Author:

Sato JunyaORCID,Sugimoto KentoORCID,Suzuki YukiORCID,Wataya TomohiroORCID,Kita Kosuke,Nishigaki DaikiORCID,Tomiyama Miyuki,Hiraoka Yu,Hori Masatoshi,Takeda ToshihiroORCID,Kido ShojiORCID,Tomiyama Noriyuki

Abstract

SUMMARYBackgroundArtificial intelligence (AI) systems designed to detect abnormalities in abdominal computed tomography (CT) could reduce radiologists’ workload and improve diagnostic processes. However, development of such models has been hampered by the shortage of large expert-annotated datasets. Here, we used information from free-text radiology reports, rather than manual annotations, to develop a deep-learning-based pipeline for comprehensive detection of abdominal CT abnormalities.MethodsIn this multicenter retrospective study, we developed a deep-learning-based pipeline to detect abnormalities in the liver, gallbladder, pancreas, spleen, and kidneys. Abdominal CT exams and related free-text reports obtained during routine clinical practice collected from three institutions were used for training and internal testing, while data collected from six institutions were used for external testing. A multi-organ segmentation model and an information extraction schema were used to extract specific organ images and disease information, CT images and radiology reports, respectively, which were used to train a multiple-instance learning model for anomaly detection. Its performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and F1 score against radiologists’ ground-truth labels.FindingsWe trained the model for each organ on images selected from 66,684 exams (39,255 patients) and tested it on 300 (295 patients) and 600 (596 patients) exams for internal and external validation, respectively. In the external test cohort, the overall AUC for detecting organ abnormalities was 0·886. Whereas models trained on human-annotated labels performed better with the same number of exams, those trained on larger datasets with labels auto-extracted via the information extraction schema significantly outperformed human-annotated label-derived models.InterpretationUsing disease information from routine clinical free-text radiology reports allows development of accurate anomaly detection models without requiring manual annotations. This approach is applicable to various anatomical sites and could streamline diagnostic processes.FundingJapan Science and Technology Agency.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3