Abstract
AbstractWhether the utilization of artificial intelligence (AI) during the interpretation of chest radiographs (CXRs) would affect the radiologists’ workload is of particular interest. Therefore, this prospective observational study aimed to observe how AI affected the reading times of radiologists in the daily interpretation of CXRs. Radiologists who agreed to have the reading times of their CXR interpretations collected from September to December 2021 were recruited. Reading time was defined as the duration in seconds from opening CXRs to transcribing the image by the same radiologist. As commercial AI software was integrated for all CXRs, the radiologists could refer to AI results for 2 months (AI-aided period). During the other 2 months, the radiologists were automatically blinded to the AI results (AI-unaided period). A total of 11 radiologists participated, and 18,680 CXRs were included. Total reading times were significantly shortened with AI use, compared to no use (13.3 s vs. 14.8 s, p < 0.001). When there was no abnormality detected by AI, reading times were shorter with AI use (mean 10.8 s vs. 13.1 s, p < 0.001). However, if any abnormality was detected by AI, reading times did not differ according to AI use (mean 18.6 s vs. 18.4 s, p = 0.452). Reading times increased as abnormality scores increased, and a more significant increase was observed with AI use (coefficient 0.09 vs. 0.06, p < 0.001). Therefore, the reading times of CXRs among radiologists were influenced by the availability of AI. Overall reading times shortened when radiologists referred to AI; however, abnormalities detected by AI could lengthen reading times.
Publisher
Springer Science and Business Media LLC
Subject
Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献