Potassium-selective channelrhodopsins can exert hyper- or depolarizing effects in excitable cells ofCaenorhabditis elegans, depending on experimental condition

Author:

Ruse Christiane,Seidenthal Marius,Tillert Linda,Vierock Johannes,Gottschalk AlexanderORCID

Abstract

AbstractOne of the most frequent applications of optogenetic tools is for depolarization and stimulation of excitable cells such as neurons and muscles. Equally important, but less frequently used, are inhibitory tools that suppress activity through cellular hyperpolarization. These tools often rely on chloride conductance. Yet,in vivo, re- and hyperpolarization is typically mediated by potassium. In recent years, light-gated ion channels with a high preference for potassium were identified (Kalium channelrhodopsins, KCRs), and their inhibitory potential described in different organisms. Here, we characterizedHcKCR1 and WiChR, in cholinergic neurons and muscles ofCaenorhabditis elegans. Hyperpolarization of these cell types both induces muscle relaxation and, consequently, an elongation of the animals. Thus, we analyzed body length before, during, and after illumination, to assess KCR effectiveness, and to benchmark stimulation parameters like light intensity and duration. ForHcKCR1 in cholinergic neurons, continuous illumination at high light intensities (1-4.5 mW/mm2) evoked only a transient elongation, while stimulation at 0.1 mW/mm2could maintain inhibition for the duration of the stimulus in some transgenic strains. For animals expressing WiChR in body wall muscle cells or cholinergic neurons, we again observed brief hyperpolarization during continuous illumination, however, still during the stimulus, this changed to body contraction, corresponding to depolarization. This effect was long lasting, and required dozens of seconds for reversion, but could be reduced by pulsed illumination and fully avoided by less efficient channel activation using green or orange light. Hence, KCRs can be applied to hyperpolarizeC. eleganscells, but require optimized illumination parameters.Article summaryTo inhibit excitable cells, light-gated, potassium-selective channels (KCRs) can be used. This study explores whether stimulation of KCRsHcKCR1 and WiChR in cholinergic neurons and muscle cells ofCaenorhabditis eleganscan induce inhibition during illumination. While inhibition could be achieved, depending on light conditions, the authors unexpectedly also observed excitation. These effects may occur due to a combination of high conductivity of KCRs, and partial conductance of other cations. These findings highlight the need for specific experimental conditions in future studies utilizing these tools. The authors also present conditions that can partially or fully avoid the unwanted depolarizing effects.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3