Hidden Structural States of Proteins Revealed by Conformer Selection with AlphaFold-NMR

Author:

Huang Yuanpeng J.ORCID,Montelione Gaetano T.ORCID

Abstract

AbstractRecent advances in molecular modeling using deep learning can revolutionize our understanding of dynamic protein structures. NMR is particularly well-suited for determining dynamic features of biomolecular structures. The conventional process for determining biomolecular structures from experimental NMR data involves its representation as conformation-dependent restraints, followed by generation of structural models guided by these spatial restraints. Here we describe an alternative approach: generating a distribution of realistic protein conformational models using artificial intelligence-(AI-) based methods and then selecting the sets of conformers that best explain the experimental data. We applied thisconformational selectionapproach to redetermine the solution NMR structure of the enzyme Gaussia luciferase. First, we generated a diverse set of conformer models using AlphaFold2 (AF2) with an enhanced sampling protocol. The models that best-fit NOESY and chemical shift data were then selected with a Bayesian scoring metric. The resulting models include features of both the published NMR structure and the standard AF2 model generated without enhanced sampling. This “AlphaFold-NMR” protocol also generated an alternative “open” conformational state that fits nearly as well to the overall NMR data but accounts for some NOESY data that is not consistent with first “closed” conformational state; while other NOESY data consistent with this second state are not consistent with the first conformational state. The structure of this “open” structural state differs from that of the “closed” state primarily by the position of a thumb-shaped loop between α-helices H5 and H6, revealing a cryptic surface pocket. These alternative conformational states of Gluc are supported by “double recall” analysis of NOESY data and AF2 models. Additional structural states are also indicated by backbone chemical shift data indicating partially-disordered conformations for the C-terminal segment. Considered as a multistate ensemble, these multiple states of Gluc together fit the NOESY and chemical shift data better than the “restraint-based” NMR structure and provide novel insights into its structure-dynamic-function relationships. This study demonstrates the potential of AI-based modeling with enhanced sampling to generate conformational ensembles followed by conformer selection with experimental data as an alternative to conventional restraint satisfaction protocols for protein NMR structure determination.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3