An efficient deep learning method for amino acid substitution model selection

Author:

Tinh Nguyen Huy,Vinh Le Sy

Abstract

AbstractAmino acid substitution models play an important role in studying the evolutionary relationships among species from protein sequences. The amino acid substitution model consists of a large number of parameters; therefore, it is estimated from hundreds or thousands of alignments. Both general models and clade–specific models have been estimated and widely used in phylogenetic analyses. The maximum likelihood method is normally used to select the best fit model for a specific protein alignment under the study. A number of studies have discussed theoretical concerns as well as computational burden of the maximum likelihood methods in model selection. Recently, machine learning methods have been proposed for selecting nucleotide models. In this paper, we propose methods to create summary statistics from protein alignments to efficiently train a network of so-called ModelDetector based on the convolutional neural network ResNet-18 for detecting amino acid models. Experiments on simulation data showed that the accuracy of ModelDetector was comparable with that of the maximum likelihood method ModelFinder. The ModelDetector network was trained from 64,800 alignments on a computer with 8 cores (without GPU) in about 12 hours. It is orders of magnitudes faster than the maximum likelihood method in inferring amino acid substitution models and able to analyze genome alignments with million sites in minutes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3