Author:
Tak Tamar,Prevedello Giulio,Simon Gaël,Paillon Noémie,Duffy Ken R.,Perié Leïla
Abstract
AbstractThe advent of high throughput single cell methods such as scRNA-seq has uncovered substantial heterogeneity in the pool of hematopoietic stem and progenitor cells (HSPCs). A significant issue is how to reconcile those findings with the standard model of hematopoietic development, and a fundamental question is how much instruction is inherited by offspring from their ancestors. To address this, we further developed a high-throughput method that enables simultaneously determination of common ancestor, generation, and differentiation status of a large collection of single cells. Data from it revealed that while there is substantial population-level heterogeneity, cells that derived from a common ancestor were highly concordant in their division progression and share similar differentiation outcomes, revealing significant familial effects on both division and differentiation. Although each family diversifies to some extent, the overall collection of cell types observed in a population is largely composed of homogeneous families from heterogeneous ancestors. Heterogeneity between families could be explained, in part, by differences in ancestral expression of cell-surface markers that are used for phenotypic HSPC identification: CD48, SCA-1, c-kit and Flt3. These data call for a revision of the fundamental model of haematopoiesis from a single tree to an ensemble of trees from distinct ancestors where common ancestor effect must be considered. As HSPCs are cultured in the clinic before bone marrow transplantation, our results suggest that the broad range of engraftment and proliferation capacities of HSPCs could be consequences of the heterogeneity in their engrafted families, and altered culture conditions might reduce heterogeneity between families, possibly improving transplantation outcomes.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献