Serial depletion and regeneration of the murine hematopoietic system. Implications for hematopoietic organization and the study of cellular aging

Author:

Ross EAM,Anderson N,Micklem HS

Abstract

The mouse hematopoietic system was subjected to repeated depletion and regeneration either by serial transfer of bone marrow cells through lethally irradiated recipients or by repeated treatment with the cycle-active drug hydroxyurea (HU). The capacity of surviving stem cells to proliferate and self-renew was assayed at intervals by two methods: (a) the spleen colony method; and (b) competitive repopulation of irradiated recipients using chromosome markers, with normal bone marrow cells as an internal control. The progressive decline in stem cell function that occurred during serial transfer of bone marrow and that had already begun after a single transfer was not seen during HU treatment; up to 25 pairs of HU injections given over more than 1 yr had no discernible effect on the number of stem cells present 3 wk after the final injection or on their capacity to self-renew. Within 2 d after exposure to HU, the average self-renewal capacity of surviving stem cells was enhanced. This implies that the drug selectively eliminates poorly self-renewing stem cells and hence that these enter cycle more readily than stem cells with a high self-replicative potential. However, the fact of being in cycle at the time of injection did not of itself affect self-renewal. The results show that serial transfer of bone marrow is not a valid method for studying clonal aging phenomena because it does not fulfill the assumptions on which such studies are based. No evidence was obtained for any intrinsic limitation in the capacity of bone marrow populations for repeated regeneration after HU-induced depletion. However, this does not necessarily imply that individual hematopoietic clones are capable of indefinite expansion because hematopoiesis may (as suggested by the relative resistance of highly self-replicative stem cells to mitogenic signals) proceed on the basis of clonal succession.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3