In situ architecture of the lipid transport protein VPS13C at ER-lysosomes membrane contacts

Author:

Cai ShujunORCID,Wu YumeiORCID,Guillen-Samander Andres,Hancock-Cerutti WilliamORCID,Liu JunORCID,De Camilli PietroORCID

Abstract

AbstractVPS13 is a eukaryotic lipid transport protein localized at membrane contact sites. Previous studies suggested that it may transfer lipids between adjacent bilayers by a bridge-like mechanism. Direct evidence for this hypothesis from a full-length structure and from EM studies in situ, however, is still missing. Here we have capitalized on AlphaFold predictions to complement the structural information already available about VPS13 and to generate a full-length model of human VPS13C, the Parkinson’s disease-linked VPS13 paralog localized at contacts between the ER and endo/lysosomes. Such model predicts a ~30-nm rod with a hydrophobic groove that extends throughout its length. We further investigated whether such a structure can be observed in situ at ER-endo/lysosome contacts. To this aim, we combined genetic approaches with cryo-focused-ion-beam (cryo-FIB) milling and cryo-electron tomography (cryo-ET) to examine HeLa cells overexpressing this protein (either full length or with an internal truncation) along with VAP, its anchoring binding partner at the ER. Using these methods we identified rod-like densities that span the space separating the two adjacent membranes and that match the predicted structures of either full length VPS13C or its shorter truncated mutant, thus providing the first in-situ evidence for a bridge-model of VPS13 in lipid transport. Intriguingly, the majority of the VPS13C rods were separated from the ER membranes by a narrow gap, suggesting that while VAP anchors the protein to the ER, direct contact of the VPS13C rod with the ER bilayer to allow lipid transport may be independently regulated.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3