Graph-based algorithms for phase-type distributions

Author:

Røikjer Tobias,Hobolth AsgerORCID,Munch KasperORCID

Abstract

AbstractPhase-type distributions model the time until absorption in continuous or discrete-time Markov chains on a finite state space. The multivariate phase-type distributions have diverse and important applications by modeling rewards accumulated at visited states. However, even moderately sized state spaces make the traditional matrix-based equations computationally infeasible. State spaces of phase-type distributions are often large but sparse, with only a few transitions from a state. This sparseness makes a graph-based representation of the phase-type distribution more natural and efficient than the traditional matrix-based representation. In this paper, we develop graph-based algorithms for analyzing phase-type distributions. In addition to algorithms for state space construction, reward transformation, and moments calculation, we give algorithms for the marginal distribution functions of multivariate phase-type distributions and for the state probability vector of the underlying Markov chains of both time-homogeneous and time-inhomogeneous phase-type distributions. The algorithms are available as a numerically stable and memory-efficient open source software package written in C named ptdalgorithms. This library exposes all methods in the programming languages C and R. We compare the running time of ptdalgorithms to the fastest tools using a traditional matrix-based formulation. This comparison includes the computation of the probability distribution, which is usually computed by exponentiation of the sub-intensity or sub-transition matrix. We also compare time spent calculating the moments of (multivariate) phase-type distributions usually defined by inversion of the same matrices. The numerical results of our graph-based and traditional matrix-based methods are identical, and our graph-based algorithms are often orders of magnitudes faster. Finally, we demonstrate with a classic problem from population genetics how ptdalgorithms serves as a much faster, simpler, and completely general modeling alternative.

Publisher

Cold Spring Harbor Laboratory

Reference20 articles.

1. O. O. Aalen . Phase type distributions in survival analysis. Scandinavian journal of statistics, pages 447–463, 1995.

2. Phase-type distributions for studying variability in resistive memories;Journal of Computational and Applied Mathematics,2019

3. Inhomogeneous phase-type distributions and heavy tails

4. M. Bladt and B. F. Nielsen . Matrix-exponential distributions in applied Probability, volume 81. Springer, New York, 2017.

5. The scale factor: a new degree of freedom in phase-type approximation;Performance Evaluation,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3