Graph-based algorithms for Laplace transformed coalescence time distributions

Author:

Bisschop GertjanORCID

Abstract

AbstractExtracting information on the selective and demographic past of populations that is contained in samples of genome sequences requires a description of the distribution of the underlying genealogies. Using the Laplace transform, this distribution can be generated with a simple recursive procedure, regardless of model complexity. Assuming an infinite-sites mutation model, the probability of observing specific configurations of linked variants within small haplotype blocks can be recovered from the Laplace transform of the joint distribution of branch lengths. However, the repeated differentiation required to compute these probabilities has proven to be a serious computational bottleneck in earlier implementations.Here, I show that the state space diagram can be turned into a computational graph, allowing efficient evaluation of the Laplace transform by means of a graph traversal algorithm. This general algorithm can, for example, be applied to tabulate the likelihoods of mutational configurations in non-recombining blocks. This work provides a crucial speed up for existing composite likelihood approaches that rely on the joint distribution of branch lengths to fit isolation with migration models and estimate the parameters of selective sweeps. The associated software is available as an open-source Python library, agemo.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3