Spatial turnover of soil viral populations and genotypes overlain by cohesive responses to moisture in grasslands

Author:

Santos-Medellín ChristianORCID,Estera-Molina Katerina,Yuan Mengting,Pett-Ridge Jennifer,Firestone Mary K.,Emerson Joanne B.

Abstract

AbstractAlthough soil viral abundance, diversity, and potential roles in microbial community dynamics and biogeochemical cycling are beginning to be appreciated1–5, little is known about the patterns and drivers of soil viral community composition that underlie their contributions to terrestrial ecology. Here, we analyzed 43 soil viromes from a precipitation manipulation experiment in a Mediterranean grassland in California, USA. We recovered 5,315 viral population sequences (vOTUs), and viral community composition exhibited a highly significant distance-decay relationship within the 18 m long field. This pattern was recapitulated in the microheterogeneity of 130 prevalent vOTUs (detected in >=90% of the viromes), which tended to exhibit significant negative correlations between genomic similarity of their predominant allelic variants and distance. Although spatial turnover was also observed in the bacterial and archaeal communities from the same soils, the signal was dampened relative to the viromes, suggesting differences in assembly drivers at local scales for viruses and their microbial hosts and/or differences in the temporal scales captured by viromes and total DNA. Despite the overwhelming spatial signal, vOTUs responsive to a decrease in soil moisture were significantly enriched in a predicted protein-sharing subnetwork of 326 vOTUs linked to 191 known actinobacteriophages, suggesting a genomically cohesive viral response to soil moisture evocative of environmental filtering, potentially by way of actinobacterial hosts. Overall, soil viral ecological processes appear to be highly constrained in space and tightly coupled to the heterogeneous, dynamic soil environment and thus fundamentally different from those of their well-mixed and more thoroughly studied marine counterparts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3