Abstract
ABSTRACTGenetic liability associated with schizophrenia most frequently arises from common genetic variation that confers small individual effects and contributes to phenotypes only when considered in aggregate. These risk variants are typically non-coding and act by genetically regulating the expression of one or more gene targets (eGenes), but the mechanisms by which unlinked eGenes interact to contribute to complex genetic risk remains unclear. Here we apply a pooled CRISPR approach to evaluate in parallel ten schizophrenia eGenes in human glutamatergic neurons. Querying the shared neuronal impacts across eGenes reveals shared downstream transcriptomic impacts (“convergence”) concentrated on pathways of brain development and synaptic signaling. The composition and strength of convergent networks is influenced by both the similarity of eGene functional annotation and the strength of eGene co-expression in human postmortem brain tissue. Convergent networks resolve distinct patterns of eGene up-regulation associated with individual-level risk in the post-mortem dorsolateral prefrontal cortex that are broadly enriched for neuropsychiatric disorder risk genes and may represent molecular subtypes of schizophrenia. Convergent gene targets are druggable as novel points of therapeutic intervention. Overall, convergence suggests a model to explain how non-additive interactions arise between risk genes and may explain cross-disorder pleiotropy of genetic risk for psychiatric disorders.
Publisher
Cold Spring Harbor Laboratory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献