Abstract
AbstractInfectivity assays are essential for the development of viral vaccines, antiviral therapies and the manufacture of biologicals. Traditionally, these assays take 2–7 days and require several manual processing steps after infection. We describe an automated assay (AVIA™), using machine learning (ML) and high-throughput brightfield microscopy on 96 well plates that can quantify infection phenotypes within hours, before they are manually visible, and without sample preparation. ML models were trained on HIV, influenza A virus, coronavirus 229E, vaccinia viruses, poliovirus, and adenoviruses, which together span the four major categories of virus (DNA, RNA, enveloped, and non-enveloped). A sigmoidal function, fit to virus dilution curves, yielded an R2 higher than 0.98 and a linear dynamic range comparable to or better than conventional plaque or TCID50 assays. Because this technology is based on sensitizing AIs to specific phenotypes of infection, it may have potential as a rapid, broad-spectrum tool for virus identification.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献