Structural interplay between DNA-shape protein recognition and supercoiling: the case of IHF

Author:

Watson George D.,Chan Elliot W.,Leake Mark C.ORCID,Noy Agnes

Abstract

AbstractThe integration host factor (IHF) is a prominent example of indirect readout as it imposes one of the strongest bends on relaxed linear DNA. However, the relation between IHF and torsionally constrained DNA, as occurs physiologically, remains unclear. By using atomistic molecular dynamics simulations on DNA minicircles, we reveal, for the first time, the reciprocal influence between a DNA-bending protein and supercoiling. While the increased curvature of supercoiled DNA enhances wrapping around IHF, the protein pins the position of plectonemes, organizing the topology of the loop in a unique and specific manner. In addition, IHF restrains underor overtwisted DNA depending on whether the complex is formed in negatively or positively supercoiled DNA. This effectively enables IHF to become a ‘supercoiling buffer’ that dampens changes in the surrounding superhelical stress through DNA breathing around the protein or complex dissociation. We finally provide evidence of DNA bridging by IHF and reveal that these bridges divide DNA into independent topological domains. We anticipate that the crosstalk detected here between the ‘active’ DNA and the multifaceted IHF could be common to other DNA-protein complexes relying on the deformation of DNA.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3