An in situ cut-and-paste genome editing platform mediated by CRISPR/Cas9 or Cas12a

Author:

Jiang Ping,Kemper Kevin M.,Chang Kai-Ti,Qian Cheng,Li Yulong,Guan Liying,van Hasselt Peter,Caradonna Salvatore J.ORCID,Strich Randy

Abstract

ABSTRACTRecombinant DNA technology mediated by restriction enzymes and ligases allows in vitro manipulation of a DNA segment isolated from the genome. Short overhangs generated by restriction enzymes facilitate efficient pasting together a DNA sequence and a vector. We adopted this recombinant DNA strategy to develop an in vivo recombinant-genome genome editing approach. Using the programmable endonuclease Cas9 or Cas12a as a restriction enzyme, we devised an in situcut-and-paste (iCAP) genome editing method that was tested in both mouse germline and human cell line platforms. Mouse gene loci Slc35f2 and Slc35f6 were each edited with in-frame insertion of a large APEX2-Cre cassette and concurrent FRT3 insertion at a second location providing proof of principle for the iCAP method. Further, a de nova single nucleotide mutation associated with MED13L syndrome was efficiently corrected in patient cells. Altogether, the iCAP method provides a single genome editing platform with flexibility and multiutility enabling versatile and precise sequence alterations, such as insertion, substitution, and deletion, at single or multiple locations within a genomic segment in mammalian genomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3