Deep mutational scanning by FACS-sorting of encapsulated E. coli micro-colonies

Author:

Behrendt Lars,Stein AmelieORCID,Shah Shiraz Ali,Zengler Karsten,Sørensen Søren J.ORCID,Lindorff-Larsen Kresten,Winther Jakob R.ORCID

Abstract

AbstractWe present a method for high-throughput screening of protein variants where the signal is enhanced by micro-encapsulation of single cells into 20-30 μm agarose beads. Cells inside beads are propagated using standard agitation in liquid media and grow clonally into micro-colonies harboring several hundred bacteria. We have, as a proof-of-concept, analyzed random amino acid substitutions in the five C-terminal β-strands of the Green Fluorescent Protein (GFP). Starting from libraries of variants, each bead represents a clonal line of cells that can be separated by Fluorescence Activated Cell Sorting (FACS). Pools representing collections of individual variants with desired properties are subsequently analyzed by deep sequencing. Notably, the encapsulation approach described holds the potential for high-throughput analysis of systems where the fluorescence signal from a single cell is insufficient for detection. Fusion to GFP, or use of fluorogenic substrates, allows coupling protein levels or activity to sequence for a wide range of proteins. Here we analyzed more than 10,000 individual variants to gauge the effect of mutations on GFP-fluorescence. In the mutated region, we observed virtually all amino acid substitutions that are accessible by single nucleotide exchange. Lastly, we assessed the performance of biophysical protein stability predictors, FoldX and Rosetta, in predicting the outcome of the experiment. Both tools display good performance on average, suggesting that loss of thermodynamic stability is a key mechanism for the observed variation of the mutants. This, in turn, suggests that deep mutational scanning datasets may be used to more efficiently fine-tune such predictors, especially for mutations poorly covered by current biophysical data.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3