Abstract
ABSTRACTSplit fluorescent proteins have wide applicability as biosensors for protein-protein interactions, genetically encoded tags for protein detection and localization, as well as fusion partners in super-resolution microscopy. We have established and validated a novel platform for functional analysis of leave-one-out split fluorescent proteins (LOO-FPs) in high throughput and with rapid turnover. We have screened more than 12,000 strand 10 variants using high-density peptide microarrays for binding and functional complementation in Green Fluorescent Protein. We studied the effect of peptide length and the effect of different linkers to the solid support and mapped the effect of all possible amino acid substitutions on each position as well as in the context of some single and double amino acid substitutions. As all peptides were tested in 12 duplicates, the analysis rests on a firm statistical basis allowing determination of robustness and precision of the method. We showed that the microarray fluorescence correlated with the affinity in solution between the LOO-FP and peptides. A double substitution yielded a peptide with 9-fold higher affinity than the starting peptide.
Publisher
Cold Spring Harbor Laboratory