INeo-Epp: A novel T-cell HLA class-I immunogenicity or neoantigenic epitope prediction method based on sequence related amino acid features

Author:

Wang Guangzhi,Wan Huihui,Jian Xingxing,Li Yuyu,Ouyang Jian,Tan Xiaoxiu,Zhao Yong,Lin Yong,Xie LuORCID

Abstract

AbstractIn silico T-cell epitope prediction plays an important role in immunization experimental design and vaccine preparation. Currently, most epitope prediction research focuses on peptide processing and presentation, e.g. proteasomal cleavage, transporter associated with antigen processing (TAP) and major histocompatibility complex (MHC) combination. To date, however, the mechanism for immunogenicity of epitopes remains unclear. It is generally agreed upon that T-cell immunogenicity may be influenced by the foreignness, accessibility, molecular weight, molecular structure, molecular conformation, chemical properties and physical properties of target peptides to different degrees. In this work, we tried to combine these factors. Firstly, we collected significant experimental HLA-I T-cell immunogenic peptide data, as well as the potential immunogenic amino acid properties. Several characteristics were extracted, including amino acid physicochemical property of epitope sequence, peptide entropy, eluted ligand likelihood percentile rank (EL rank(%)) score and frequency score for immunogenic peptide. Subsequently, a random forest classifier for T cell immunogenic HLA-I presenting antigen epitopes and neoantigens was constructed. The classification results for the antigen epitopes outperformed the previous research (the optimal AUC=0.81, external validation data set AUC=0.77). As mutational epitopes generated by the coding region contain only the alterations of one or two amino acids, we assume that these characteristics might also be applied to the classification of the endogenic mutational neoepitopes also called ‘neoantigens’. Based on mutation information and sequence related amino acid characteristics, a prediction model of neoantigen was established as well (the optimal AUC=0.78). Further, an easy-to-use web-based tool ‘INeo-Epp’ was developed (available at http://www.biostatistics.online/INeo-Epp/neoantigen.php)for the prediction of human immunogenic antigen epitopes and neoantigen epitopes.

Publisher

Cold Spring Harbor Laboratory

Reference65 articles.

1. T-Cell Epitope Prediction Methods: An Overview

2. Proteolysis, proteasomes and antigen presentation

3. K. Can , A. K. Nussbaum , S. Hansjörg et al., “Prediction of proteasome cleavage motifs by neural networks,” Protein Eng, no. 4, pp. 4, 2002.

4. An integrative approach to CTL epitope prediction: A combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions

5. NetMHCpan-4.0: Improved Peptide– MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data;Journal of Immunology,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3