Transdermal electrical neuromodulation of the trigeminal sensory nuclear complex improves sleep quality and mood.

Author:

Boasso Alyssa M.,Mortimore Hailey,Silva Rhonda,Aven Linh,Tyler William J.ORCID

Abstract

Achieving optimal human performance that involves cognitive or physical work requires quality sleep and a positive mental attitude. The ascending reticular activating system (RAS) represents a powerful set of endogenous neuromodulatory circuits that gate and tune global brain responses to internal and external cues, thereby regulating consciousness, alertness, and attention. The activity of two major RAS nuclei, the locus coeruleus (LC) and pedunculopontine nucleus (PPN), can be altered by trigeminal nerve modulation. Monosynaptic afferent inputs from the sensory components of trigeminal nerve branches project to the trigeminal sensory nuclear complex (TSNC), which has direct and polysynaptic connections to the LC and PPN. We previously found high-frequency (7 - 11 kHz) transdermal electrical neuromodulation (TEN) of the trigeminal nerve rapidly induces physiological relaxation, dampens sympathetic nervous system responses to acute stress, and suppresses levels of noradrenergic biomarkers. Given the established roles of LC and PPN neuronal activity in sleep regulation, psychophysiological arousal, and stress, we conducted three studies designed to test hypotheses that modulation of the TSNC can improve sleep quality and mood in healthy individuals (n = 99). Across a total of 1,386 days monitored, we observed TEN modulation of trigeminal and cervical nerves prior to sleep onset produced significant improvements in sleep quality and affective states, quantified using clinically validated surveys, overnight actigraph and heart rate recordings, and biochemical analyses compared to baseline or sham controls. Moreover, we observed some frequency dependence in that TEN delivered at lower frequencies (TENLF; 0.50 - 0.75 kHz) was significantly more effective at improving sleep quality and reducing anxiety than higher frequency TEN waveforms. Collectively our results indicate that transdermal electrical neuromodulation of trigeminal and cervical nerve branches can influence TSNC activity in a manner that significantly improves sleep quality and significantly reduces stress. We conclude that biasing RAS network activity to optimize sleep efficiency and enhance mood by electrically modulating TSNC activity through its afferent inputs holds tremendous potential for optimizing mental health and human performance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3