Author:
Patten Anna R.,Sickmann Helle,Hryciw Brett N.,Kucharsky Tessa,Parton Roberta,Kernick Aimee,Christie Brian R.
Abstract
Exercise can have many benefits for the body, but it also benefits the brain by increasing neurogenesis, synaptic plasticity, and performance on learning and memory tasks. The period of exercise needed to realize the structural and functional benefits for the brain have not been well delineated, and previous studies have used periods of exercise exposure that range from as little as 3 d to up to 6 mo. In this study, we systematically evaluated the effects of differential running periods (3, 7, 14, 28, and 56 d) on both structural (cell proliferation and maturation) and functional (in vivo LTP) changes in the dentate gyrus of adult male Sprague–Dawley rats. We found that voluntary access to a running wheel for both short- and long-term periods can increase cell proliferation in the adult DG; however, increases in neurogenesis required longer term exposure to exercise. Increases in immature neurons were not observed until animals had been running for a minimum of 14 d. Similarly, short-term periods of wheel running did not facilitate LTP in the DG of adult animals, and reliable increases in LTP were only observed with 56 d of running. These results provide us with a greater understanding of the time course of wheel running access needed to enhance DG function. Furthermore, the results indicate that the new neurons produced in response to exercise in rats do not contribute significantly to synaptic plasticity until they mature.
Publisher
Cold Spring Harbor Laboratory
Subject
Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献